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Abstract

Measurements of temperature distribution and local heat flux were performed in a rectangular Rayleigh–Bénard (RB) cell with aspect
ratios Cx ¼ 5 and Cy ¼ 1 using air as the working fluid. The range of Rayleigh numbers was from Ra � 6� 107 up to Ra � 6� 108 and
the measurements were taken at four different positions on the cooling and heating plates. The structure of the temperature profiles was
analysed with the scaling to the temperature gradient at the wall c, calculated from both global Nusselt number ðcglobÞ and the measured
local heat flux density q ðclocÞ. The measured local Nusselt number in the center of Rayleigh–Bénard cell is found to be significantly
higher than the global Nusselt number, which was calculated from a heat transfer law, based on asymptotic considerations from Hoelling
and Herwig [M. Hoelling, H. Herwig, Asymptotic analysis of heat transfer in turbulent RB-convection, Int. J. Heat Mass Transfer 49
(2006) 1129–1136]. Profiles scaled with cglob agree very well with the universal asymptotic temperature profile for Ra ! 1. Conversely,
profiles scaled with cloc have another structure. The results clearly show the difference between the temperature profiles from the theo-
retical model with walls of infinite extend and from the real RB-cell. In contrast to common opinion the structure of the temperature
profile was found to consist of three different behaviors. It has been observed for all profiles a linear behavior in the viscous sublayer
directly on the wall, a power law in the boundary layer and a logarithmic function in the overlap layer.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Thermal convection is a frequently occurring type of
fluid motion. There is not enough information about the
local heat flux and its influence on the temperature distri-
bution in the near wall region and there are just few studies
about the relation between the global and local heat flux in
a convection cell [2]. In this publication temperature and
local heat flux measurements under similar boundary con-
ditions are reported.

The Rayleigh–Bénard experiment is a common model
for the study of turbulence and heat transport in thermal
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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convection. Rayleigh–Bénard convection occurs in a fluid
between a lower heated plate with the temperature T hot

and an upper cooled plate with the temperature T cool.
The temperature difference DT ¼ T hot � T cool between both
plates drives the flow. The convection cell is adiabatic at
the side walls and has isothermal top and bottom plates.
This kind of convection can be fully described by five con-
trol parameters, namely the Rayleigh number (Ra), the
Prandtl number (Pr), the Nusselt number (Nu) and two
aspect ratios Cx and Cy . The Rayleigh and Prandtl numbers
are given by

Ra ¼ bgDTh3

ma
and Pr ¼ m

a
; ð1Þ

whereas the aspect ratios are defined as
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Nomenclature

A parameter of temperature profile
B parameter of temperature profile
C parameter of temperature profile
D parameter of temperature profile
g gravitational acceleration
h vertical distance between the plates
l length of the convection cell
Nu Nusselt number, ðoT=ozÞjz¼0 � hDT
Q12 radiative heat flux, defined in Eq. (21)
q, qrad heat flux density, radiative heat flux density
Pr Prandtl number, m=a
Ra Rayleigh number, bgDTh3=ma
T mean temperature
T cold, T hot temperature of the cooling and heating plate
T bulk temperature in the bulk area, ðT cold þ T hotÞ=2
T c reference temperature, defined in Eq. (5)
DT temperature difference between the plates
x coordinate parallel to the plates
X p, X c measurement positions

z coordinate normal to the plates
zþ scaled coordinate normal to the plate, defined in

Eq. (9)

Greek symbols

a thermal diffusivity
b coefficient of thermal expansion
C power law diagnostic function
Cx, Cy aspects ratio
c temperature gradient at the wall, oT=ozjz¼0

d reference length scale, defined in Eq. (6)
e emissivity of the plates
Hþ normalised temperature, defined in Eq. (8)
m kinematic viscosity
N logarithmic diagnostic function
r Stefan–Boltzmann constant, r ¼ 5:67� 10�8

W=m2 K4

u view factor of the plates surfaces
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Cx ¼
l
h

and Cy ¼
w
h
: ð2Þ

The heat flux through the cell is characterised by the Nus-
selt number defined as

Nu ¼ oT
oz

����
z¼0

� h
DT

: ð3Þ

In the given equations the following variables were used: b
– coefficient of thermal expansion, g – acceleration of grav-
ity, h – height between heating and cooling plate, l – length
of the cell, w – width of the cell, m – kinematic viscosity, a –
thermal diffusivity and oT=ozjz¼0 – temperature gradient at
the wall.

The transition to the turbulent regime in air occurs when
the value of Ra reaches 106 [3]. This regime is the focus of
the paper, where the Ra range is 6� 107 < Ra < 6� 108. In
the present work we use a convection cell with one large
aspect ratio, namely Cx ¼ 5, and one intermediate aspect
ratio Cy ¼ 1.

The theory behind the Rayleigh–Bénard experiment
assumes that the horizontal plates extend infinitely,
whereas the heat flux is assumed to be constant for the
whole plate surface [1]. Since the total heat flux is a charac-
teristic quantity for RB-convection, it can be used for the
analysis of temperature profiles. A new theoretical study
of Hoelling and Herwig concerns the asymptotic analysis
of the near-wall region of turbulent natural convection
[4]. In contrast to the previous studies they tried to find
an uniform theory for the temperature profile in the system
with horizontal walls of infinite extent. According to Hoel-
ling and Herwig the preliminary quantity to nondimensi-
onalise the temperature profiles is the heat flux density q

defined as

q ¼ k � oT
oz

����
z¼0

: ð4Þ

For simplification of the representation of our data we
determine the temperature gradient at the wall as
joT =ozjz¼0 ¼ c.

The natural scale of the temperature variations, a so-
called reference temperature T c is an analog to the friction
velocity in turbulent shear flows and is composed of the
temperature gradient at the plate and material properties
of the fluid:

T c ¼
am
gb
� c3

� �1=4

: ð5Þ

With temperature T c the length scale of the boundary layer
and the overlap layer can be defined as

d ¼ T c

c
; ð6Þ

true for

lim
Ra ! 1

d
h
¼ 0: ð7Þ

Analogous temperature and length scales have been al-
ready used for the study of the thermal convection in
the past by Priestley and Townsend [5,6], have been
mentioned by Maystrenko et al. [7] and have latterly
been successfully applied by Hoelling and Herwig to
represent temperature profiles at the vertical heated
walls [4] as well as the temperature profiles in RB-con-
vection [1].
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The nondimensional temperature Hþ is defined via

Hþ ¼ T hot � T
T c

ð8Þ

and the nondimensional length zþ via

zþ ¼ z
d
¼ c � z

T c

: ð9Þ

Hoelling and Herwig proposed the asymptotical structure
of the temperature profile in RB-convection, where for
the overlap layer the following logarithmic function is
valid:

lim
zþ!1

Hþ ¼ C lnðzþÞ þ D ð10Þ

and for the viscous sublayer the following linear equation is
valid:

Hþ � zþ: ð11Þ

This authors analysed experimental and numerical data of
many previous studies and hence postulated for the overlap
layer an universal temperature profile for Ra ! 1:

Hþ ¼ C lnðzþÞ þ D; where C ¼ 0:1; D ¼ 3:43: ð12Þ

They were unable to found any power law behavior in the
curve progression of HþðzþÞ.

At the same time many further studies supported the
power law scaling in the form

Hþ ¼ BzþA ð13Þ

for the temperature in Rayleigh–Bénard convection [7,8] as
well as for the mean velocity in pipe and channel flows [9–
11].

Not only the vertical distribution of the temperature but
also the distribution of the heat flux is an open question of
the RB-convection. It was already mentioned that the Nus-
selt number describes the heat transport through the fluid
in the cell. The global Nusselt number as a function of the
Rayleigh number has been investigated extensive in the past.
Unfortunately, a uniform theory for Nu ¼ f ðRa; Pr;CÞ does
not exist. One of the first investigations was done by Priestley
[5]. He postulated the power law

Nu � Ra1=3: ð14Þ

The later investigations with higher accuracy in helium
(Pr = 1) of Castaing et al. [12] show another power law

Nu � Ra2=7: ð15Þ

The 2/7-power law was proved in many later experimental
and theoretical studies [13–15]. Furthermore, Grossmann
and Lohse developed a theory, assuming dissipation in the
boundary layer and the mean flow [16]. They composed a
phase diagram with different power laws for the different re-
gions of Ra and Pr. In our Ra range ð6� 107 < Ra < 6� 108Þ
and Pr ¼ 0:7 the Nusselt number is located in the area I � l
and is defined as

Nu ¼ 0:27Ra1=4Pr1=8: ð16Þ
Based on their universal profile (12) Hoelling and Herwig
proposed a new asymptotic Nu–Ra correlation for
Ra ! 1 as an alternative for the theory of Grossmann
and Lohse:

Nu ¼ Ra1=3

C
2

lnð0:078
16
� Ra1:323Þ þ 2D

� �4=3
; ð17Þ

where C ¼ 0:1 and D ¼ � 14:94

Ra0:52 þ 3:43
: ð18Þ

This Nu–Ra relation defines the global Nusselt number as-
sumed as constant in each point of RB system, which con-
sists of two horizontal plates of infinite extent.

Thereby it is a fact that in a real system with horizontal
plates of finite extent, which are bounded by vertical walls,
and Rayleigh numbers, that are not yet large enough for
the asymptotic representation ðRa ! 1Þ, the local heat
flux is distributed over the plate surface in an uneven
way. The measurements of Lui and Xia [2] in a water filled
cylindrical cell for 108 < Ra < 1010 show, that the local
Nusselt number Nuloc in the center of the cell is approxi-
mately 20% higher than global Nusselt number Nuglob.
Whereas the simple arithmetic average of Nuloc from 11 dif-
ferent positions on the plate becomes very close to Nuglob.

We performed a series of high accuracy temperature and
heat flux measurements and as a result we can contribute to
the form of the local temperature profile, without influ-
ences of any kind of averaging. In this work the scaling
of the temperature profiles was done with the theoretical
global (index: glob) temperature gradient estimated from
Nuglob and measured local (index: loc) temperature gradient
estimated from measured heat flux density q. The results of
both methods were compared.

To sum up, the main focus of this paper is in the exten-
sive study of the structure of the temperature profiles in
the given Ra range and the analysis of the self-similarity
of the temperature profiles. Moreover, the difference
between the theoretical prediction and the experimental
results for the temperature distribution in the RB-cell will
be investigated. We are also interested in the heat transport
through the cell in a turbulent regime and their dependence
on Ra, as well as the difference between local and global
Nusselt numbers.
2. Experimental method and procedures

2.1. Experimental setup

In Fig. 1, the configuration of the RB-cell used in the
present experiment is shown. The cell is a rectangular box
with a 2.5 m length, a 0.5 m width and a 0.5 m height.
The working fluid is air. The box is heated from below
(cooled from above) by means of 37 mm thick water-heated
(water cooled) aluminium plates. The side walls of the cell
have a thickness of 8 mm and are made of Perspex. In order
to reduce heat losses between the cell and the environment,
the side walls are insulated with 180 mm thick Styrodur.



Fig. 1. Schematic of Rayleigh–Bénard cell with central X c and peripheral X p measurement positions (cut along the longitudinal axis of the cell).
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The so-called sandwich construction of the cooling and
heating plates ensures a high temperature distribution
homogeneity on the surface of the plates. In the hard alu-
minium coverage copper pipes with diameter of 20 mm are
uniformly placed. Through this pipes the heating or cool-
ing water is streaming. The schematic of the pipe orienta-
tion in the plate is shown in Fig. 2a as well as the cross
sectional view of such plate is given in Fig. 2b. The distance
between the cooper pipes in the plate is only 30 mm. The
high volume rate of the water flow and the good thermal
conductivity of the aluminium coverage of the plates
ensure usually a temperature distribution homogeneity of
±0.1 K on the surface of the plates. The temperature distri-
bution on the surfaces was monitored by 40 PT-100 tem-
perature probes, which where placed on the longitudinal
and lateral axis of the plates and are marked in Fig. 2a with
black dots. Both plates where tempered by separate water
circulation systems. The heating and cooling apparatus
have an accuracy of temperature adjustment of ±0.1 K.
We were able to reach a temperature difference of
DT ¼ 5 . . . 80 K between both plates, limited by boiling
temperature and dew point of water. Three big measure-
Fig. 2. Construction of the plates (a)
ment windows with a diameter of 100 mm (Fig. 2a) allow
the placement of the measuring probes in the convection
cell. This windows are permanent closed by aluminium
top covers with the wiring of the sensors.

With the described temperature interval from the mini-
mum cooling plate temperature of 10 �C and the maximum
heating plate temperature of 90 �C, and with the distance
between the plates of h = 0.5 m we can cover a range of
Rayleigh numbers from 6� 107 up to 6� 108. Our Carte-
sian coordinate system was defined as follows. We located
the origin at the center of the lower surface of the cooling
plate. The x-axis is parallel to the long side of the upper
plate, and the z-axis is oriented downward. We were able
to do the local temperature measurements at three mea-
surement windows, respectively on the heating and the
cooling plate. We used the windows in the center of the
plates as the central measurement position (index: c).
Due to the symmetrical structure of the large-scale convec-
tion flow, described in [7], just one of two peripheral mea-
surement position was used for the measurement (index: p).
Regarding the construction of the sensor support x-coordi-
nate X c ¼ �65 mm for the central measurement position
and their cross sectional view (b).
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and x-coordinate X p ¼ 585 mm for the peripheral measure-
ment positions were relevant (Fig. 1).
Table 1
Complete set of Rayleigh numbers, temperatures of cooling ðT coolÞ and
heating ðT hotÞ plate at which the temperature profiles and the local heat
flux density q were measured, as well as the measured heat flux densities on
the cooling plate ðqcoolÞ and the heating plate ðqhotÞ and the calculated
radiative heat flux densities qrad

Position Ra T plate (�C) q ðW=m2Þ qrad ðW=m2Þ
T cool T hot qcool qhot

X c 6:02� 108 12.91 87.13 462.42 441.76 25.75
4:10� 108 14.95 56.10 229.52 205.66 12.33
2:79� 108 15.94 41.12 129.98 113.53 7.02
1:92� 108 15.96 32.07 68.62 76.49 4.36
2.2. Measurement system

For the temperature measurement two sensor systems
based on glass-encapsuled NTC microthermistors with a
diameter of 120 lm have been used. Each thermistor have
been mounted on a 4 mm thick support (Fig. 3). The sen-
sors can be moved up to z ¼ 150 mm distance from cooling
and heating plates simultaneously with two 1D traverse
systems with a smallest step of 10 lm. A personal computer
operates automatically the step motor of the traverse sys-
tems. The minimal distance between sensor and plate cor-
responds to the half of the thermistor diameter.

A very low current has been used for the thermistor
operation in order to avoid measurement errors due to a
self-heating effect. For the amplification of the resistance
variance of the thermistor a resistance bridge with an inter-
nal DC voltage source has been used. This bridge recon-
verts the resistance variance of the thermistor to a
voltage signal and amplifies this signal by a factor of 100.
The output voltage of the bridge is measured by a digital
multimeter Agilent 34970A with an integrated 349020A
16-Channel-Reed-Multiplexer. We used two channels with
a sampling rate of 66 Hz, resulting in 33 Hz for each of the
two channels. The personal computer converts the voltage
signal to the temperature values by means of the calibra-
tion curves, which were unique for each microthermistor.

The measurement interval is located between
0:07 mm < z < 150 mm distance from the cooling and
heating plates and is sampled at 68 non-equidistant posi-
tions with 10 lm steps in the vicinity of the plates, resulting
in two simultaneously measured temperature profiles with
34 z-positions each one. The measuring time for each posi-
tion was approximately 1 h, resulting in k � 119; 000 tem-
perature values for one position. In other words 68
temperature series T iðzÞ with 1 6 i 6 k represent the raw
data for two simultaneously measured temperature
profiles.

After the completion of the temperature measurements
the heat flux measurements were performed under exactly
the same boundary conditions. The measurement was done
with commercial heat flux sensors Ahlborn, model 120.
The sensors have a diameter of 33 mm and thickness of
1.5 mm and are made from epoxy resin. We placed four
heat flux sensors in the cell on the surface of the heating
Fig. 3. Schematic of the thermistor probe positioning for both measure-
ment positions.
and cooling plates at X c and X p (Fig. 1a and b). For each
temperature profile, the heat flux density at the plate was
measured. The accuracy of the sensors was given as 5%
at 25 �C by the manufacturer. A laboratory assay showed
for temperature T ¼ 20 �C a dispersion of ±5%, for
T ¼ 50 �C; � 7% and for T ¼ 80 �C; � 10%. These values
will be used for the estimation of the deviation of the heat
flux measurements.
3. Experimental results

3.1. Temperature profiles

We performed measurements of temperature time series
T iðzÞ and local heat flux density q at both positions X c and
X p at the heating and cooling plate. At both positions the
temperature was measured simultaneously with the same
distance from the cooling and heating plate. The measure-
ments were carried out for seven Rayleigh numbers, sum-
marised in Table 1. From the temperature time series
T iðzÞ the temperature profiles were calculated by

T ðzÞ ¼ 1

K

XK

i¼1

T iðzÞ: ð19Þ

The overview of six temperature profiles measured at X p is
given in Fig. 4. We found typical boundary layer profiles,
the temperature grows very fast near the heating and cool-
ing plate and is constant in the bulk. The profiles measured
on the heating and cooling plate are nearly symmetrical
and at the distance of z ¼ 150 mm always already reach
the bulk temperature T bulk. We can assume, that the tem-
perature remains constant for the 200 mm – intermediate
bulk area. In the inset of Fig. 4 the absolute measurement
errors for the highest Ra ðRa ¼ 6� 108Þ and the lowest Ra
1:30� 108 17.09 27.73 42.62 47.87 2.79
8:91� 107 16.92 24.00 25.69 31.83 1.82
6:16� 107 17.29 22.12 18.33 19.16 1.23

X p 6:00� 108 12.90 87.18 411.11 503.47 25.77
4:10� 108 15.00 56.08 203.17 227.95 12.31
2:79� 108 15.91 41.11 115.72 125.69 7.03
2:00� 108 15.90 32.70 81.58 74.94 4.49
1:30� 108 17.10 27.79 49.62 43.80 2.80
8:89� 107 16.93 23.99 28.65 28.10 1.81
6:16� 107 17.23 22.08 20.196 17.91 1.23
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ðRa ¼ 6:2� 107Þ have been indicated by error bars. The
measurement uncertainty consists on the systematical
uncertainty and precision limit, which is defined as confi-
dence interval for 95% of all measured temperature values.
The relative measurement uncertainty increases with
decreasing Rayleigh number. It is less than 1% for
Ra ¼ 6� 108 and less than 2.5% for Ra ¼ 6� 107.

In our previous work [7] we were not able to represent
the temperature profiles in wall variables, because of the
absence of information about heat flux. In present work
we normalised our profiles as recommended by Hoelling
and Herwig [1]. Due to our convection cell having a large
aspect ratio of Cx ¼ l=h ¼ 5, the boundary conditions are
approximately comparable to the theoretical case with
the walls of infinite extent.

It should be mentioned, that in [1] the temperature pro-
files were analysed with temperature gradient c obtained
from the analytical Nu–Ra dependency (17). Whereas the
global Nusselt number Nuglob presents the average of heat
flux over the whole plate surface. According to this, the
temperature gradient cðNuglobÞ shows the average of tem-
perature gradients over the whole plate. The real distribu-
tion of the heat flux on the plate surface is uneven and
impacts the vertical temperature distribution in the cell.
In other words, the theoretical temperature gradient esti-
mated from the global heat flux cðNuglobÞ could be different
from the local temperature profile near the wall.

In conclusion, the measurement of the local heat flux
density q is needed for the calculation of c, in order to
get the non-averaged local temperature profile. Hence the
variations of the local heat flux will be included in the tem-
perature gradient cðqÞ and in the normalised temperature
profile HþðzþÞ.

3.2. Heat transfer

One of the most frequently discussed questions in RB-
convection concerns the heat transfer through the fluid
layer. At positions X c and X p local heat flux density q on
the cooling plate qcool and the heating plate qhot was mea-
sured simultaneously. The results are summarised in Table
1. From q we calculated local Nusselt numbers by

Nuloc ¼
q
k
� h
DT

: ð20Þ

We did not have the possibility to determine the global heat
flux in the cell experimentally. Thus we used the theoretical
predictions of [1,16] and calculated the global Nusselt num-
ber Nuglob according to (16) and (17).

The results are compared in Fig. 5 and Table 2. First of
all we see a large difference between Nuloc and Nuglob. The
local heat flux along the longitudinal axis of the cell
appears to be more than 50% higher than the global heat
flux. Also the differences between Nuloc at different posi-
tions is quite visible. However, these fluctuations are small
enough to be caused by measurement errors. They are
shown in Fig. 5 with error bars.



Table 2
Complete set of Nusselt numbers: Nuloc measured on the cooling and heating plates and Nuglob calculated from analytical dependencies (17) and (16), as
well as the local temperature gradients cloc calculated from q and the global temperature gradients cglob calculated from Nuglob (17)

Position Ra Nuloc Nuglob cloc (K/m) cglob (K/m)

Heating plate Cooling plate (17) (16) Heating plate Cooling plate (17)

X c 6:02� 108 124.57 99.17 55.14 40.43 18,497 14,725 8185
4:10� 108 110.39 89.38 48.89 36.73 9072 7345 4024
2:79� 108 101.49 82.78 43.37 33.37 5117 4174 2184
1:92� 108 83.80 89.19 38.57 30.37 2702 2876 1243
1:30� 108 78.91 85.94 34.20 27.56 1671 1820 728
8:91� 107 71.55 86.95 30.44 25.08 1007 1224 431
6:16� 107 74.57 77.04 27.18 22.87 719 743 263

X p 6:00� 108 110.75 113.03 55.10 40.40 16,444 16,782 8184
4:10� 108 97.72 99.06 48.89 36.73 8030 8141 4017
2:79� 108 90.36 91.65 43.37 33.37 4556 4621 2186
2:00� 108 95.53 83.80 39.07 30.68 3212 2817 1313
1:30� 108 91.87 78.63 34.20 27.56 1945 1665 731
8:89� 107 79.95 76.76 30.42 25.06 1126 1081 430
6:16� 107 80.82 70.84 27.18 22.87 792 694 264
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As showed by Lui and Xia [2] Nuglob displays the average
of Nuloc over the plate surface. Furthermore, they found
Nuloc in the center of cylindrical cell is approximately
20% higher than Nuglob. The same significant differences
between Nuloc and Nuglob were observed by du Puits et al.
in a large-scale cylindrical convection cell, whose results
will be published in the future [17]. This results of [2,17]
support our data.
3.3. Radiation exchange

Nuglob was calculated by Eqs. (16) and (17) without consid-
ering the influence of radiation. Due to of emission and
absorption between two surfaces with different temperatures
a heat flux caused by the radiation exists. One could imagine,
that this radiative heat flux influences the measurement data
of qcool and qhot and could be the cause of Nuloc 6¼ Nuglob.

For the radiation exchange between two diffuse gray
surfaces under consideration of reflections is given [18]:

Q12 ¼
re1e2A1u12ðT 4

hot � T 4
coolÞ

1� ð1� e1Þð1� e2Þu12u21

; ð21Þ

whereas r ¼ 5:67� 10�8 W=m2 K4 – the Stefan–Boltz-
mann constant, e1 and e2 – the emissivities, u12 and u21 –
the view factors of the surfaces are.

This equation was used to determine the radiation
exchange between the heating plate and the heat flux sensor
fixed on the cooling plate as well as between the cooling
plate and the heat flux sensor fixed on the heating plate.
The heat flux sensors have a surface area of
A2 ¼ 3:14� 10�4 m2, a emissivity of e2 ¼ 0:9 (plastic mate-
rial) and a view factor of u21 ¼ 1. The heating and cooling
plates have surface areas of A1 ¼ 1:25 m2, a emissivity of
e1 ¼ 0:05 (polished aluminium) and a view factor of
u12 ¼ u21

A2

A1
¼ 2:5� 10�4.

The in that way calculated radiative heat flux density
qrad ¼ Q12=A2 is also summarised in Table 1. We can see,
that the radiation exchange is always present, but the radi-
ative heat flux density qrad represents only 5–7% of the mea-
sured qcool and qhot.

It can be summarised, that the influence of the radiation
exchange is to small to cause the 50% difference between
Nuloc and Nuglob.

3.4. Temperature gradient

Since the local heat flux is much larger than the theoret-
ical global heat flux, the temperature gradient calculated
from the measured heat flux density cloc is much higher
than the gradient calculated from the theoretical Nu–Ra

prediction (17) cglob:

cloc ¼
q
k

; cglob ¼
Nuglob � DT

h
: ð22Þ

For all temperature profiles the local temperature gradient
cloc calculated from q and global temperature gradient cglob

calculated from Nuglob are also summarised in Table 2.
An example of the temperature profile, measured by

Ra ¼ 8:8� 107 at the cooling plate ðX cÞ is shown in
Fig. 6. It is quite evident that the measured local gradient
conforms much better with the temperature profile than
the global theoretical gradient. This example is typical for
all measured data. We can conclude that cglob, which is
basically an averaged temperature gradient for the whole
plate surface, is not representative for the local temperature
profiles. Consequentially, cglob should not be used to ana-
lyse the measured temperature profiles because the local
gradient variations are not taken in account.

4. Analysis

4.1. Structure of the temperature profiles

We normalised our profiles for the cooling plate Hþc and
for the heating plate Hþh via



0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

z [mm]

T
(z

) 
  T

co
o

l

γ
loc

γ
glob

– 
 

Fig. 6. Near wall part of the temperature profile ð	Þ ðRa ¼ 8:8� 107Þ
compared with measured cloc and theoretical cglob temperature gradients.
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Hþc ¼
T ðdzþÞ � T cool

T c

; Hþh ¼
T hot � T ðdzþÞ

T c

: ð23Þ

The distance z was normalised as per Eq. (9):

zþ ¼ z
d
¼ c � z

T c

: ð24Þ

We calculated the reference temperature T c (5) twice, with
theoretical cglob and measured cloc temperature gradients.
As expected, the differences between cglob and cloc cause
great differences in the curve structure of the normalised
profiles HþðzþÞ. In Fig. 7 an example for Ra ¼ 1:9� 108

measured at the cooling plate ðX pÞ is shown. The profile
normalised to cglob corresponds very well to examples of
normalised profiles from Hoelling and Herwig [1]. The
same profile normalised to cloc has another structure. This
difference, systematical for all analysed temperature pro-
files, will be discussed later.
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Fig. 7. Temperature profile Hþc ðzþÞ measured at Ra ¼ 1:9� 108 ðX cÞ and
normalised with cglob ðsÞ and cloc ðdÞ.
The next important property is the structure of the tem-
perature profiles in the near wall region. The complete set
of temperature profiles measured at the central measure-
ment position X c and normalised to cloc in semi-logarithmic
(Fig. 8a) and double-logarithmic (Fig. 8b) representations
are shown. By comparison with examples of measured pro-
files used in [1], our data demonstrates a significantly
higher spatial and temporal resolution. For clear represen-
tation the profiles have been shifted by a factor of +2
(Fig. 8a) and a factor of �10 (Fig. 8b).

Three areas with different behaviors of HþðzþÞ were
found for all temperature profiles. They are separated with
dotted lines and colored gray in Fig. 8. At first for the vis-
cous sublayer directly on the plate ðzþ < 0:2Þ a linear
dependency Hþ ¼ azþ þ b similar to (11) has been
obtained. However, this area, separated in Fig. 8a with
the first dotted line, is much thinner than in examples from
[1], in which the profile is linear up to zþ � 2.

In the next step the logarithmic region could be confirmed
with our data. This region is located far from the wall in the
so-called overlap layer. In this area 8 < zþ < 100 a logarith-
mic behavior Hþ ¼ C lnðzþÞ þ D (10) was observed. This
area is also separated in Fig. 8a with dotted lines and colored
gray, the data are approximated with solid lines.

In contrast to Hoelling and Herwig [1] a wide region
with a distinct power law behavior between linear and log-
arithmic areas was observed. In a double-logarithmic rep-
resentation (Fig. 8b) the approximation of this grey
colored area with Hþ ¼ BzþA for 0:2 < zþ < 3 are shown
with solid lines. The aberration of the temperature profiles
and linear behavior, proposed by Hoelling and Herwig [1]
for this region, can be obtained from Fig. 8a. In our previ-
ous publication we already observed and analysed a power
law behavior in the boundary layer [7]. Furthermore, other
new experimental studies exist, which indicate the power
law behavior [8,19] for temperature and velocity profiles
in the near wall layer. A lower spatial resolution of mea-
surements used by Hoelling and Herwig ([1] (Fig. 3)) can
be a possible reason why the power law region could not
be found.

To prove the power and logarithmic manner the diag-
nostic function recently suggested by Wosnik et al. [20]
was utilised

N ¼ zþ
dHþ

dzþ

� �
; C ¼ zþ

Hþ

� �
dHþ

dzþ

� �
: ð25Þ

In Fig. 8c, the logarithmic diagnostic function N shows an
approximately constant behavior for 8 < zþ < 100, which
proposes the logarithm of HþðzþÞ. In Fig. 8d, the power
law diagnostic function C is shown, its constant behavior
for 0:2 < zþ < 3 verifies the power law.
4.2. Self-similarity of the temperature profiles

We measured the temperature at the heating and cooling
plate for seven Ra at both positions X c and X p (Table 1),



Fig. 8. Normalised temperature profiles, measured at the position X c at the heating plate: Ra ¼ 6:16� 107 ðdÞ, Ra ¼ 8:91� 107 ðjÞ, Ra ¼ 1:3� 108 ðrÞ,
Ra ¼ 1:92� 108 ð.Þ, Ra ¼ 2:79� 108 ðNÞ, Ra ¼ 4:1� 108 ðJÞ, Ra ¼ 6:02� 108 ðIÞ; the same empty symbols apply for the measurements at the cooling
plate. Results are shown in semi-logarithmic (a) and double-logarithmic (b) representations (the areas of linear and logarithmic (a) as well as power (b)
manners are colored gray). Logarithmic diagnostic function N (c) and power law diagnostic function C (d) calculated for in (a) and (b) shown temperature
profiles.
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resulting in 28 temperature profiles. They were scaled with
cglob and cloc.

In both cases we regard the effect of the variable thermal
diffusivity coefficient a. It was done by multiplying c by
ratio awall=abulk, which is the ratio of the thermal diffusivity
at wall temperature to thermal diffusivity at bulk tempera-
ture. This aspect is especially important for the profiles
measured at high Ra, because of the variability of the phys-
ical properties of air at a large DT .

In this section our analysis will be summarised with a
comparison of curve structures at both normalisation. In
Fig. 9a and b, the coefficients of approximations with
power law Hþ ¼ BzþA and logarithmic function
Hþ ¼ C lnðzþÞ þ D are displayed. These coefficients A, B,



Fig. 9. The coefficients of approximation with Hþ ¼ BzþA(a) and Hþ ¼ C lnðzþÞ þ D (b) for temperature profiles normalised with cglob ð
Þ resulting in
Aglob, Bglob, Cglob and Dglob; as well as normalised with cloc ðdÞ resulting in Aloc, Bloc, Cloc and Dloc. Asymptotic values of C = 0.1 and D = 3.43 are shown
with dotted lines.
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C and D, obtained from normalisation with cglob (index:
glob) and with cloc (index: loc), are the focus of our interest.

At first the power law region Hþ ¼ BzþA at 0:2 < zþ < 3
will be discussed (Fig. 9a). The exponent A characterises
the slope of the temperature profile. The difference between
temperature gradients at the wall cglob and cloc impacts
slightly on the slope. It varies in the whole Ra range
approximately in the interval 0:5 6 Aloc;Aglob 6 0:7, with-
out any dependency on Ra. The additive coefficient B is
quite affected from the difference between temperature gra-
dients, as expected Bglob > Bloc.

The results of the approximation of the logarithmic
region 8 < zþ < 100 with Hþ ¼ C lnðzþÞ þ D are shown in
Fig. 9b. The constant C, characterising the slope, is analo-
gous to 1=j from the well known Karman–Prandtl universal
log-law. The slope of our profiles Cloc conforms well with the
theoretical prediction for Ra ! 1 of C = 0.1 (dotted line).
It is noticeable that Cglob deviates from the value of C = 0.1
more than Cloc. The additive constant Dglob fluctuates in a
wide interval, but agrees very well with examples from [1].
Here the asymptotic value for Ra ! 1, D ¼ 3:43 is also
marked with a dotted line. As expected, Dloc is much smaller
than Dglob. We can summarise the results as Dloc ¼ 1:5� 0:5.

Because of the small Ra range we cannot interpolate the
asymptotical values from the parameters A; B; C; D for
Ra ! 1. But, due to the Ra-independent fluctuations of
this coefficients we can average the approximations of 28
temperature profiles, which have been measured in the mid-
dle area of the convection cell. The averaged local coeffi-
cients Aloc, Bloc, Cloc and Dloc provide following power
and logarithmic functions:

Hþ ¼ 0:67zþ0:56 for 0:2 < zþ < 3; ð26Þ
Hþ ¼ 0:09 lnðzþÞ þ 1:57 for 8 < zþ < 100: ð27Þ
The results given in Fig. 9 clearly show the difference be-
tween the theoretical model with walls of infinite extend
and a real RB-cell. The theory basically shows an averaged
temperature profile over the whole plate surface. But after
accomplishing heat flux measurements, we can assume that
the heat flux in the central area of the cell is much higher
than the average. Consequently, the temperature profiles
normalised to cglob inevitably have an averaged curve pro-
gression. We can summarise that in order to define the lo-
cal and uninfluenced structure of the temperature profile,
the local temperature gradient cloc has to be used for
normalisation.
5. Conclusions

We have studied the mean temperature profiles and local
heat flux in turbulent Rayleigh–Bénard convection. The
local heat flux was found to be uneven distributed over
the plate surface. The temperature gradient at the wall
was obtained from the analytical global Nuglob and the mea-
sured local Nuloc heat fluxes, and it was decided that the
theoretical global temperature gradient cglob does not con-
form to the measured temperature profiles. Since the wall
temperature gradient is a crucial parameter for analysis,
the structure of the normalised temperature profile is
directly dependent on this. In order to consider the local
variations of the heat flux the local temperature gradients
cloc have to be used for the scaling of the temperature pro-
files. The outcome is, that the universal temperature profile
resulting from asymptotical analysis of the system with
walls of infinite extend can not be applied unconditionally
in a real RB-cell.

The high resolution of our measurement data enables
the extensive analysis of the structure of the temperature
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profile. It has been observed for the first time, that three
different behaviors in the temperature profile were proved:
linear in the viscous sublayer directly at the wall, power law
in the boundary layer and logarithmic in the overlap layer
between the boundary layer and bulk.
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